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Abstract.

In this paper we propose a simple naive estimator of the failure rate

function. This estimate is asymptotically unbiased but not consistent.

It can be smoothed by using any band limited window. We show that this

smoothed estimate is equivalent to estimates obtainable from the modified

sample hazard function, as in Rice and Rosenblatt (1976). We obtain the

asymptotic distribution of the globa l deviation of the smoothed estimate

from the failure rate function, which can then be used to construct uniform

confidence bands . We illustrat e the rate of convergence of our estimator

by a Monte-Carlo simulation.

1. Introduction.

The failure rate function is one of the most important parameters in

reliability theory. Several parametric and non-parametric methods for its

estimation have been proposed in the literature. Most of these methods

make specific and restrictive assumption s concerning the underlying distri-

but ion.

In this paper we first propose a very intuitive (and naIve) estimate

of the failure rate function, and study its properties in Section 2. Our

estimate does not require specific assunptions on the underlying distribution

and is tixas non-parametric. We show that our est imate is a~ymptotically

unbiased, but not consistent. ~ irth.rwre, it is shown that the naive

estimate of the failtw. rate function at two distinct points are asymptotically

independent . A paradox concerning the estimat e, reminiscent of the famous 

_ ._.
,__ ___~~__ __ 
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inter-arrival time paradox illustrated by Feller [(1966) Vol . 2 , p. 11],

is shown in Section 3. The above facts limit any direct use of the naive

estimator for estimating the failure rate function.

In Section 4, we propose smoothed estimators obtained by averaging

the naive estimator r~ by a band-limited window. We show that these

smoothed estimators can be approximated by an appropriate Gaussian

process (Theorem 4.5) , and thus obtain the asymptotic distribution of the

global deviation on any finite interval. This result can be used to construct

confidence bands for the failure rate function (Theorem 4.10). Section 5

• contains some results of a Monte-Carlo experiment which illustrates the

performance of our smoothed estimators.

The main steps in the proof Theorem 4.5 may be described as follows.

Bickel and Rosenblatt (1973) have pioneered a new technique of proof to

approximate the normalized and centered sample density function by a sta-

tionary Gaussian process. The basic step in their proof is a use of the then

~‘~~~~bte result of Breiman and Brillinger approximating the normalized and

centered empirical distribution function by a Brownian bridge. Rosenblatt

(1976) has strengthened these results by using the recent stronger results

of KomlOs, I~jor and Tusn*dy (1975). Rice and Rosenblatt (1976) have pro-

posed three estimates h~~~, ~~~~ and h~
3
~ of the failure rate function

which are non-parametric in nature. They have directly applied the strengthened

results of Bickel and Rosenblatt on the density function to obtain the asymp-

totic global results for ~~~~ They have also shown that h~
2
~ is asymp- -

• totically close to ~~~~ By approximating the normalized and centered

sample hazard functions K~ by a Weiner process under a monotone transform

~~~~~ 12 04 0~ .i

-
. 

~~~~~~~~~
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of time, we obtain, in much the same way as Bickel and Rosenblatt , the

asymptotic global deviation results for our smoothed estimate and the

Rice and Rosenblatt estimator ~~~~ In the course of this proof , we also

show that ~~2) and h~
3
~ are uniformly asymptotically equivalent to our

smoothed estimate 
~ 

on each finite interval . Other nonparametric estimates

of the failure are studied in Shaked (1978) and Ahnad and Lin (1977) .

2. The NaIve Est imate and its Properties.

Let X1,X2,...,X~ be independent and identically distributed random

variables with a common distribution function F(x). We shall assume that

12(0) • 0 and that 12(x) possesses a density function f(x). The failure

rate function of F(x) is r(x) - f(x)/P(x) where T(x) • I - F(x) . The

hazard function H(x) is -log V(x) (defined whenever F(x) > 0) and

11(x) a r(x) . The purpose of this paper is to provide estimates of r(x)

and to obtain the asymptotic distribution of the global deviation of these

estimates.

The naive estimate r~(x) of the failure rate is defined as follows:

(n-i.l)(X j -x i 1 ~ 
‘ 

if X(j 1) 
� X < X(j)

C •
(2.1) r~(x) —

0 , if X � X ~~~,

where 0 a X(0) ~ ... � are the order statistics of

- v .— -~~~ —~ - - — __________ . -~~~~~~ ~~~~~~~~~ .-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -
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This estimate has been used by Singpurwalla (1975) wherein he used

a t ime series approach for analyzing failure rates in contaminated data.

Before the time interval (X(j_1)~ X(j)) there have been (i-l) failures;

thus only (n-i+l) are still functioning in this interval , and one item is

to fail at the right end point of this interval. It is therefore intuitive

to assign a constant failure rat e in this interval and ~o define the naive

estimator r~(x) as i~ (2.1). Another motivation :~or (2.1) is that

the failure rate in the interval (X(i..l)~ 
X(1)) should be the reciprocal

of the ‘total time on test’ in that interval. The limiting distribution

• of r~(x) is obtained in Theorem 2.1 below.

Let G(ci; A) denot e a gamma rando. variable with scale parameter ci

and shape parameter A; that is the density function is

x > O .

Notice that

E(G(e; A)) a A/ci ~or A > 0

and

E(l/G(a; A)) — z/ (A - l)  for A > 1.

[at G4(a; A) • l/G(a; A); G ’1(a; A) is usuelly referred to as the inverse

ga random variable.

_

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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Theorem 2.1.

a
Ci) P(l/r~(x) � a) + / e ’

~~
’
~y(r(x))

2dy;
0

that is

1/r~ (x) + G(r(x) , 2) in law.

Consequently

r~(x) + G 4(r(x) , 2) in law.

(ii) Let ~~~~~~~~~~~ be distinct. Then

are asymptotically independent.

Proof. Fix x, and let 0 c F(x) c 1. Let i be the random suffix satisfying

X(j_1) � x < X (1)

“herein, we set X(0) • 0, and x(~ 1) • •; thus i can take values l,2,...,n.

Since i has a binomial distribution with parameters n and F(x),

(2.2) + 12(x), in probability as n +..

Conditional on i1 the distribution of (X(1)J...P X(j..1)) and (X(i) I . . . . X(fl) )

are those of the order statistics of independent sample os size (i-l) and
(n-i.l) from the truncated distributions P~ and Fx , respectively, where

I i

__________________ ___________ ~~~~~~~~~ —-
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P(y)/F(x) y � x
F~(y) —

1 y > x

and

0 y � x
FX (y) z

(12(y) - F(x))/~(x) y > x.

Standard ext reme value theory for extreme values shows that

(2.3) • (i-l)f(x)(x-X(. 1))/F(x) + G(1, 1) in law

and

(2.4) B~ • (n-i+l)f(x)(X(.)-x)/V(x) + G(l, 1) in law.

Note now that

l/r~ (x) n-i+l 

~f9 A~ + B~ .

It follows from (2.2) , (2.3) , (2.4) and the conditional independence of
and 8~ given i that

n (x) ~ G(r(x) , 2), in law.
2’

This proves part (i).

We will now br iefly indicate the proof of part (ii). For simplicity,

a;sune that k—2, and that x1 c x2. Let i1 � i2 be the random suffi xes
satisfying

and X(j 1) � x 2 < 

----- - - -- - - - ---
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Then, conditional on i1 and

(X (l)~ ...~ X(i_ l)) , (X ( i )~ ...~X(i _l)) ,  and (X(j)J...)X(fl))

become the order statistics in independent samples from three truncated

distributions. Si:~ce the minimum and the maximum of a sample are asymptotical ly

independent , and rn(x1) depends on X(i l) and X(~~) only, and rn(x2)

depends on x~. P and X,.~ .~ only, we can imitate the earlier part of our
~
12 t 2_,

• proof to show that r (x1) and r~(x 2) are asymptotically independent .II .

3. Remarks on Theorem 2.1.

The important conclusions that can be drawn from Theorem 2.1 are the

following:

( i) r~(x) is not a consistent estimate of r(x) ; indeed, r~(x) has

a limiting non-degenerate distribution.

(ii) While the asymptotic mean of rn(x) is r(x), we can actually
show that

E r~ (x) + 2 (’) 

-

The factor of 2 in the above result is quite surprising, and is remini-

scent of the inter-arrival paradox so well explained in Feller [(1966) Vol. 2,

p. 11).

(iii) Since (r
~

(xi),...,r~(x.~)) are asymptotically independent ,

4 the graph of (r~(x) x�0) will exhibit wild fluctuations, and will not

a good estimator of the failure rate.

—- 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• 4. A Smoothing of the Naive Estimate.

The phenomenon described in the previous section is similar to the

behavior of the periodogram in est imating the spectrum of a stationary time

series . We shall therefore use the standard technique of ‘smoothing ’ the

naIve estimate with a ‘window’ to obtain a consistent and asymptotically

normal estimate of the failure rate.

A window is a function w(u) such that

(WI) w(u) w(-u) � 0, and

(W2) J w(u)du a 1.

The window is said to be band-limited if

(W3) w(u) • 0, for l u l  � A,

and to be bounded, if

(W4 ) 0 � w ( u )  � M < ~~.

The smoothed estimatci of the failure rate depends on the window w(u)

and a sequence (b~} sati rying

(81) b~ + 0, and nb~ -! ~~~~

Without loss of generality, we may assume that

(82) 0cb ~~�A.

- ‘- 
~~~~ L - ~~~~~ ~~~~~~~~~ ______ - - - - - — _________________



We define the smoothed estimator ~~(x) obtained by smoothing r~
• with the window w and bandwidth 2b~A as follows :

— 1 , (x-s~(4.1) r~(x) — 
~~

— 
~ 

w~-~-—-j r (s)ds

= f w(s)r (x-b s) ds.

When w is a bandlimj ted window (i.e.,  satisfies (iV3)) , i~(x) will be
used as an estimate of r(x) only for x � bAA. since the smoothing being
done in (4.!) does not include the whole bandwj th of w when x < bAA.

Define

R (x) = / r~(y~dy - 
.~~~~~ n-J +~

for X (1 1) � X C

i = 1,. . .  ,n ,

nF Cx)
(4. 2) = 

~ 
+ 0 (x) for x < X()

where O� 0 (x ) � 1

nF (x)

We may now re-write i Cx) asn

i~(x) - ~~~~~ 
j  w(.~!.)dR (x).

4 ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- 
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• The following lemma shows that Rn (x) and H~ (x) - -log F~(x)

(defined only for x < X (~) ) are uniformly close to each other in bounded

intervals.

Lemma 4.1. Fix K c 
~

; then

(4.3) sup R~(x) - H~ Cx) ( � 
_

~~ 
-

0�x�K 2nF~ (K)

if T (K) > 0; i.e. , if K <

Proof. We shall use the elementary inequality

2
Ix + log(l-x)~ ~ 2( 1-x) for 0 x 1.

Note that

nF (x) nF (x)
(4.4) H~ (x) — -log ~~(x) = 

j~ l 
log n;J+l 

= - 

~~ 

1041 - n-j+l)

From equations (4 .2) and (4.4) , if x � K C

nF (x)
lR~ (x) - II~(x) 

~ j~ l ~~ 
+ io4i - n_~+l) l + 

1112 (X)

1 1 ii i
— Z ~..1og~l - ~~j +
n-nF

11(x)+l nF
11
(x)

L

I

_ _ _ _ _ _ _ _

- ~~~~~~~~ — 
2__• - . ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• 1 1 2 1
n~nF~(K).1 11 

~ - nn F (K)+l 

+

1 
_________ 

n-n F~(K) +l 1
~ n-n F,~(K) +r n-nF~(K) + 

nF~(K)

3 1 II.nF~(K)

Rice and Rosenblatt (1976) have introduced a class of estimators

• h~
3
~~x), where

h~
3
~ Cx) a 

~~~~~ 
f w (~~~}dH~ ( s).

in Lemma 4.2 we will show that our smoothed estimator ~~ (x) is uniformly
close to h~

3
~(x) on bounded intervals.

Lemma 4.2.  Let w be a bounded band limited window; that is, w satisfies
(Wi) , ($2) , ($3) and ($4) . Let w also satisfy

(~5) JIw ’(x)Idx ~ c c

where w’ is the derivative of w.

Let the constants (b~} satisfy (81) and (B2), and let K c — . Then

(4.5) si~ ~~ (x) - h~
3
~(x)I � 

Sc
• O~x�k ~ 2flb~~~(K.A)

whenever K.A �

- - — 4 - - - 
~- -

~~~~ •~~~~~~~~~ ‘ ~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -
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n_nF~(K)+1 1 - 

n-nP (K)+l nF~(K)

1 1 n-nF~ (K) + i I� 

~ n-nF (K)~ijj n-nF
11

(K) n~11
(K)

3 1
nF11 

(K)

Rice and Rosenblatt (1976) have introduced a class of estimators

h1~
3
~(x), where

h~
3
~ Cx) — 

~~~
— f w dli Cs).

in Lemma 4.2 we will show that our smoothed estimator i
11(x) is uniformly

close to h~
3
~(x) on bounded intervals.

Lemma 4 .2 .  Let w be a bounded band limited window; that is, w satisfies
($1) , ($2) , (W3) and ($4) . Let w also satisfy

($5) JIw ’(x) Idx � C <~~~,

where w’ is the derivative of w.

Let the constants (b~} satisfy (81) and (B2) , and let K c ~ Then

(4.5) sup I~11
(x) - h~

3
~(x)I ~~ 

— 
Sc

0�z~K n 2nb V
11
(K.A)

whenever K.A � X
(11) •

- • - —
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - . 
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• Proof: Notice that , for x � K � X (11) - A

Ii~(x) - h~
3
~(x)j a ~~~ / w ~~~! d(R~(x) - H~(s)Jj

� 
j5
L w(.~.!JcR s, -

-

‘ 

+ ..~~~. 

lC~A
1
~~~~~ 

- H~(s) I I w ’f ~~ )Ids .

• (since x � K , b � A, and x+b � JC+A)

1 from Lemma 4 .1 and (W5) . I I .2nb~F (IC.A)

Define

, (4.6) B(x) — F(x) B’(x) - _f(x )
T — r(x)

F(x) [~(x)] F(x)

and

(4.7) r~(x) — 
~~~

—. J w(~!)dH(s).

Let

_ _ _  3 *~ (x) • 
_____ 

(h~ ~(x) - r (x)), b A � x � K,TI fl

— 1~~~ 
- 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and

*

j  (x) • ~I (r (x) - r (x)), b A S x � K.
/R’(x) ~

In Theorem 4.4 , we will show that the process (~~ (x) ,  b~A � x � K)

is uniformly close to a stationary Gaussian process. Because of Lemma 4.2,

this same result (Theorem 4.5) will also apply to the process (t~(x) . b~A S x S K}.

In Theorems 4.6, and 4.7, we obtain the asymptotic distribution of

max F~ (x)~ and max R (x)~ . In order to make these results useful
b~A�zSK ~l b

11
A~x�K n

for obtaining untform confidence bands for r(x), b~A � x s K, we will have

to replace r (x) by r(x) and also replace any unknown quantities that

enter in the asymptotic theory by their estimates. This is done in two stages,

in Theorem 4.9 and Theorem 4.10. The result in Theorem 4.10 is in the most

useful form for applications. Define

Z~(x) a s’~(H (x) - H(x)).

Theorem 4.3. There exists a Gaussian process ( 2(x), 0 � x S K+A) with

mean function zero and E(Z(x), Z(y)) • B(x) for x S y, and such that

(4.8) sup 1Z 11
(x) - Z(x)~ — D log n w.p. 1,

0�x�K+A

• whenever X~~ K + A, where D is a random variable with P(D < .) = 1.

- 
f ~~ —-~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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• Proof: In the rest of this paper we use the generic name D for any random

-
• 

variable with P(D C s) • 1.

From Komlds , Maj or and Tusnády (1975), there is a Gaussian process

{Y(x), 0 5 x} with mean function zero and E(Y(x)Y(y) ) = F(x)( l-F(y) )

for 0 5 x S y, and such that

sup l ’c(F (x) - F(x) ) - Y(x)l 
D log ~ 

~~~~~~~ 1.
0�x

Since X (~) > K + A, we have for 0 � x � K+A ,

2 (x) — -V~~ log
F(x)

~ (x)-P(x)
— - vi~ iog i+ ~

F( x)

• -vS~~log l - 
Y(x) + 2_i2L~.

1~~Y(x) nF(x)

— 
Y(x)~~~~j~g~~

• 2(x) + D

where 2(x) • , 0 ~ x S K.A. It is easy to see that
• 12(x)

(2(x), 0 5 x � KiA ) is Gaussian with mean 0, and E(Z(x)Z(y) ) • B(x) for

x S y. This completes the proof. I I .

,

— ~~ - --  
•• - - ~~~~~.

_
• 

~~~~
- -~- -- 

-•-••- 
~~~~~~~~~~~~~ 

- - - - -• - 
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-
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• Let (tV( s) , -~~~ C s < co} denote a Weiner process , and define

(4.9) c(0) •fw (0-t)dW (t), 0 5 0 <

Then {c(0), 0 s 0 < s} is a stationary Gaussian process with

E(~(0)) = 0 and E(~(0 + 6)~(0)) =fw(a+t)w(t)dt = p (6)  (say) .

We now need to impose further conditions on the distribution function F:

(Fl) B” (x) is bounded on 0 5 x S K ,

and

(P2) inf B ’(x) > 0.
0’x�K.A

Theorem 4.4. Let w satisfy conditions (~l)-(~4). Let (Bl), (B2), (Fl)

and (F2) hold. Then there exists a stationary Gaussian process

A s e � K/b11
) which is a restriction of {~(e) } for A 5 0 5 K/ba.

such that

(4.10) 
b
11
As~.�K

’
~~ 

- c11
(x) I - 

D(
b0~~ h1 

+ b~
)

whenever X(n) K + A .

Proof: The proof of this theorem follows by going through steps which are

analogous to those used by Bickel and Rosenblatt for their Propositions 2.1

and 2.2. and using the key approximation result in Theore~t 4.3.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.-~~~ —~ - 
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Theorem 4.5: Theorem 4.4 is true with F
11

(x) replaced by ~~( s).

Proof: Immediate from Theorem 4.4 and Lemma 4.2. J J .
In order to obtain the asymptotic distribution of max k~(x)I and

- b~A�x�K
max k~(x) we will let

b~ASx�K

(4.11) A(w) — J w2(t)dt ,

~~~~~~~~~~ K1(w) w2 (A) +w 2 (-A)

If K 1(w) 0, we shall require that

($6) J (w (t))2dt c

(notice that ($6) implies (~V5)), and set

(4.13) K2(w) — f (w (t))2dt/2A(w).

Let

(4.14) c~ • (2 log (K/b
11

))~~.

Define

(4. 15) ~~ c11/ (A/ w))~ ,

and

H
I 

_ _ _  

j
—_~~~‘~~ _ ._ ~~~_- .—,-— ~~-_. -•-_-~~~~ _~~~~~~~~~~.~~~~~~~ _ , _~~ _ _ _ _ _ _— — — —
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• (4.16) a
11 — (A(w))~~[c~ +

when w satisfies (W1)-(W5) and K1(w) > 0,

(4.17) — (A(w))½(c2 + log(K2(w)/w)]/c

when w satisfies (Wl)-(W4) , (W6) and I(1(w) a 0.

Theorem 4.6. Let 14 a max 1ç1 (x ) I. Let (Wl)-(W5) hold with K1(w) > 0
b11A~x�K

or (Wl) -IV(4) and (116) hold with K1(w) = 0. Let (B !), (B2) , (Fl) and (F2)

hold . Then

(4 .l W~ P {a (M - a )  S z} +

for 0 < x < s .

Proof: Follows from Theorem 4.4 and the results on the extreme of a stationary

Gaussian process with an autocorrelation function p(0) given in Appendix A

of Bickel and Rosenblatt. II

Theorem 4.7. Let i~ max R~(x)I. 
Theorem 4.6 holds with 

~~ replacedII b ASx�K
by M

11
. 

n

Proof: Immediate from Theorems 4.5 and 4.6. II
• In order to obtain results which are useful for applications, we will

have to replace r~ (x) in ~~(x) and i11
(x) by r(x) . We shall now

indicate the steps which enable us to do this. We impose a further condition

I - -- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - — ——  - ~~~~~- —



r — 

-

~~ 

- P—- — -

-18 -

on F which implies (122) if 12(K) > 0:

(F3) r(x) is twice continuously differentiable.

Lemma 4.8. Let (F3) hold. Let (Wl), (112) hold. Then

(4.19) sup Ir *(x) - r(x)J 5 Lb2
OSx�K ~

where L is some finite number.

Proof: Now,

r~(x) - r(x) - 
~~~

_ f w(~~!)dH(s) - r(x)

— / [r(x + tb~ ) - r(x)Jw(t)dt

A (tb)2
• f [tb

11
r (x) + “ (r~~x) +~~x, t , b11))]w(t)dt-A

where y (x , t, b,~) + 0 uniformly in x, t

A
— b2Y (x) f t2w(t)dt[l + 0(1)],

-A

and 0(1) is uniform in x.

Thus sup Ir *(x) - r(x)I ~ where 0 5 L <. .• 0�x�K TI

Let th. constants b
11 satisfy the condition

(83) nb~ log b
11 + 0. 

— - - •. • - - - - —— - •~ --—————.— ——— -••- - •• •—=—•-. — —•.— - t_._~~~~- —••~~~—•—4— - -. — - , ~~~~~4rta ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—~ -- --- —--~ ---- - - — —  —-•~~~~~~—~~~•-~~~~~~~~~~~~~~ 

- 19 -

• For instance b
11 

- n~~ with < a < will satisfy (81) - (33) .

Theorem 4.9. Under the additional assumption (83) holds, we may replace

r,~(x) by r(x) in the definitions of F
11
(x), t11

(x), ~ and ~~ and
Theorems 4.6 and 4.7 will continue to hold for the new H and i~~ .

• Proof: Note that

• 

/2 log K/b
11 ~~~~ (h~

3
~ (x) - r(x) )

• — /2 log K/b
11 

V’i ~~~~ (h~
3
~(x) - r~(x) )

+ 12 log K/b
11 

v’~~~ (r~(x) - r(x) )

a c v ’~~~x1 ~11
(x) + 0(/nb~ log K/b

11
)

— c
11
/B (x~ ~11

(x) + 0(1) .

This fact proves the theorem. 
j J .

Notice that the denominator /8(x) (— 1h/r(x) /~ (x)) in the definitions

of C~(x) and ~11(x) is unknown. In Theorem 4.10 we replace B (x) by

an estimate to obtain uniform conficence bands for r(x) using our smoothed

esti tor p
11(x). In an analogous manner, we can also obtain unifrom confi-

dence bands for r(x) using h~
3
~(x).

Theorem 4.10. Let ($1) - ($5) hold with K1(w )  > 0 or let ($1) - ($4),

($6) hold with K1(w) • 0. Let (81) - (83), (Fl), (F3) hold. Let

I 1

~

__ -_ -,, !

~

_ 4 .
__ I~
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and B be as defined in (4.15), (4.16) and (4.17). Then

I 
i~11

(x) ½

(4.20) P’~i~ (x) - ~~~~~
_ + a~) � r(x)

I nb~T11
(x) n

i (x) ½ ( .

~ 2-z11 I-~--~~a I  + e
nb~P (x) ~ ~ fl

for

Proof: This theorem follows from the fact that ~~ (x) /T (x) and

are uniformly estimates of B (x) .

Remark: To obtain a lOOa% uniform confidence band for r(x) for b
11
A S x � K

we use the two functions

i ( x) ½
r(x) ± (_L + ci

)nb
11~11

(x) ~n ~

with z — -log (-(1/2) log a).

5. An Illustrative Example With Si.azlations.

A smoothing window which is quite natural ‘
~ich also turns out to

be computationally simple, is the uniform -

(5.1) w(u) • 
~~
.
, (u (  c I.

This w satisfies (Wi ) - ($5) with I(
1

(w) • .~~ > 0.

• - -r~ ~~— -•,• - ~
•‘

-~~~~~~~~~~~
- - -•

~
——-—- - —--•-—•--•••••—•.•-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — —— —
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• In order to obtain an expression for i~ (x) using this window , we

shall make use of the following elementary results.

For any x ~ [r-l , r]

It fol lows from the above that

n-k
• ~~ !�log !1!

r-n-j +l r n-j

t and

n-k+l 1 n-k+l

: r—n~j+ 2 ~~T � log n-j.l

For any x � 0, and any specified ~~ let Z 1 — (j-l) be the number

of observations (failures) to the left of x - b
11
, Z2 (k-j+l) the number

of observations between x + 1, and x - b , and 23 - (n-k) be the number

of observations to the right of x + b
11
. Also let

iç (n_ i+1) (X (i) _X (j . l))’ 
or ( i—i )  x (i)’

x
i — l ,2 ,...,n. If W(x) — f w(s) ds, then

0

;

L -~~~~~ 
--

~~~-,----- - . -~~~~~! 
-- — - --—~~~~~~~~~~~~~~~~~~ - - 

~~~~~~~~~—~~-~~ ---- - -~~
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~ 
X~j~

- I ~ Cx) — 
~ 

f  r (x)w(x-s)ds • ~~ W(x_X(1))[0
1 

- 1)
i a l X .  i—i i+l i(i-1)

For w( .)  given by equation (5.1) , we have

= 
l [U)

( x b n) 
+ 

X
~ .y

X(.) 
+ +

+ + 
X(k)

_X
(k l) 

+ 
x+bn

_ X
(k)]

• 
~~~~~ 

U~ tJk+1 J

or that

(5.3) i~ (x) — 
1 [()) 

-(x-b11) 
+ • •

~~~ 

+ + ... + 
x+b _ x

(k)]

Based upon the above and the elementary results presented before, we

can write

n.j n - + l 1

* TI_L1 ~~ 1
11

(x) � 

~~~ n-k

The left hand inequality is obtained by ignoring the first and the
last terms of (5.3) , whereas the right hand inequality is obtained by
sett ing x + b~ X(k+l) and X - b~ = X()_ 1) in the last and the first

• terms of (5.3) , respectively.

~ I

-i
- 

-~~~ ~~~~~~~~~~ ~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •-
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• Thus
41

log S i
11

(x) S log 
~~~~~~~~ 

or

1 22+2 3 1 
______

~~~~~
— log 23+1 

r~(x) S ~~~~~
— log

In view of the above, a computat ionally simple expression for i~11
(x) is

2
(5.4) 

~~~~ ~ 
log

5.1. Results of a Monte-Carlo Experiment.

In this section we shall summarize our experience with the estimator

given by equation (5.4) , based on a Monte Carlo experiment .

Random samples of size n C- 10, 15, 20 and 50) were generated from

an exponential distribut ion with scale parameter 1.0 , and a Weibull distri-

bution with shape parameter 2.0, respectively. For each sample size we

obtain i~(x) using a uniform window with b
11 

- .1
~~~
, for a = 0.05, 0.10, 0.15,

0.20, 0.25, and 0.75. We repeat this procedure 500 times for each of the

specified 24 combinations of sample size and window width . Based upon the

results of these 500 trials, we calculate at each point x, the average,

• the standard error, and the root mean square error of i~11
(x). These statistics

—-- _ _-__•_..-•~-_ - _ -~~ - - - _  • • . ~~~ .•_ _ - _ 1 
- -- •

• 
~~~ — 

• _ -

— —a-- •-•— ,- — _•_,
__
•_1~•_I•• ~~

_.I•
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are suimaarized in Table 5.1 for the exponential distribution at the point

x — 1.0, and in Table 5.2 for the Weibull distribution at the point x — 0.5.

In Figure 5.1 we show a plot of the average value of i~ (x) at each

point x, based on n - 10 and a 0.75 for the exponential distribution,

whereas in Figure 5.2 we show a similar plot for n - SO. In Figures 5.3

and 5.4 we give plots analogous to those in Figures 5 .1 and 5.2 , respect ively,

but for the Weibull distribution.

On the basis of the above described experiment, we can state the

• following by way of conclusion:

i) For samples as smal l as 10 or 15, the smoothed estimator obtained

by using windows of small width is generally unbiased; the bias increases

with the width of the window. This phenomenon is especially t rue for points

in the middle of the range of x.

ii) The standard error decreases with the width of the window.
4- 

_~ iii) It appears that towards the end points of the range of x, a

smoothed estimator based on a narrower window width performs better than

one based on a wider window width.

The above comments suggest the possibility of using windows of varying

widths. A version of this strategy has been considered by Miller and

Singpurwal la (1978). For further details on the Mont6-Carlo experiment,

we refer the reader to Chandra (1977).

~~~~~~~~~~~~~~~~~~~~ 
- -  A ~~~~~~~~~~~~ ~ -~~~- h- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— -• 
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TABLE 5.1

SAMPLING PROPERTIES OF SPIK)OThED ESTIMATOR OF ThE FAILURE RATE
AT THE POINT x - 1.0 FROM AN E XPONENTIAL DISTRIB1 .TrIO~

SAMP LE WINDOW WIDTH MEAN STANDAR D E RROR SQUARE D ERROR

10 0.356 1.0649 1.0259 1.0230

1.125 0.9362 0.5126 0.5166

1.262 0.9178 0.4854 0.4923

1.416 0.8518 0. 4517 0.4754
• 1.589 0. 8240 0.4608 0.4932

1.782 0.7710 0.4396 0.4961

15 0.262 1.1780 1.1004 1.1147

1.016 1.0373 0.5153 0.5167

1.164 1.0248 0.4376 0.4383
1.332 1.0452 0.4327 0.4350
1.526 0.9704 0.3974 0.3985

1.74 7 0.9306 0.4019 0.4079

20 0.212 1.0978 0.8748 0.6802
0.946 1.0537 0.4501 0.4533
1.099 1.0751 0.4123 0.4191
1.276 1.0353 0.3658 0.3675

1.582 1.0376 0.3606 0.3626
1.722 0.9966 0.3452 0.3452

50 0.106 1.0145 0.7258 0.7259
0.752 1.0237 0.2835 0.284 5
0.915 1.0183 0.2599 0.2605

• 1.112 1.0479 0.2449 0.2495
1.353 1.0280 0.2284 0.2301

1.645 1.0251 0.1982 0.1998

- - _ - •~ - - I ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  - _ - 
_ - _ _
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• TABLE 5.2

SAMPLING PROPERTIES OF SMOOTHED ESTIMATOR OF ThE FAILURE
RATE AT TUE POINT x — 0.5 FROM A WEIB ULL DISTRIBUFION

SAMPLE WINDOW WIDTh MEAN STAN DARD ERROR ROOT MEAN
SQUARED ERROR

10 0.356 1.0459 0.6402 0.6419
1.125 1.0769 0.4614 0.4678
1.262 1.0314 0.4598 0.4609
1.416 0.9773 0.4189 0.4195

1.589 0.9309 0.4644 0.4695

1.782 0.8130 0.4744 0.5099

15 0.262 1.0530 0.5870 0.5894

1.016 1.0746 0.4022 0.4091
1.164 1.0649 0.3874 0.3928
1.332 1.0995 0.3783 0.3912

1.526 1.0549 0.3818 0.3857

1.747 1.006 3 0.4144 0.4144

20 0.212 0.9351 0.5809 0.5811
0.946 1.0422 0.3224 0.3251

1.099 1.0633 0.3245 0.3307

1.276 1.0494 0.2945 0.2987
1.582 1.0855 0.3350 0.3458
1.722 1.0816 0.34 79 0.3574

50 0.106 0.9893 0.4915 0.4917
• 0.752 1.0270 0.2043 0.206 1

0.915 1.0230 0.1997 0.2010 
—

1.112 1.0154 0.1912 0.1918

1.353 1.0339 0.1958 0.1988

1.645 0.0867 0.1876 0.2067

~ - r
- .— --— ,— l - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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